Monday, 8 May 2017

Karoo Biogaps experience


By Thaakira Samodien

Our first pentad was Rietfontein farm, South of Colesberg. The weather was extremely humid and the sun was at its peak while we were out in the field. The first plant species that stood out for me as we drove to our site was the Brunsvigia radulosa. Its shape, size and beautiful colour caught my eye immediately and I was in utter awe that such beauty exists in the Karoo. As we got to the site, we got all our equipment ready and started our day. I was amazed at how many different species there were that were flowering. Aspalathus, Selago, Hermannia, Jamesbrittenia, Gnidia, and lots of different grasses were some of the species that we collected on the first day. In total we found about over 130 species on the first day. 



























The second day was the best Karoo experience I had. This site was on Doornberg farm in Nieu Bethesda. It was a beautiful hot day and we found lots of special flowers. Although it was hot, it rained while we were in the field which made the day even more special. The site was a beautiful site; flat dry land with hill tops filled with lots of grasses. We reached a river area as well where we found different types of Cyperus and dragonflies. My favourite flower that we found on that site was a tiny little Hermannia species. We called it Hermannia candy-like, because its colour was a combination of white, yellow and a reddish-pink.






The next few days it rained quite a bit which made some of the sites very difficult to gain access to, but we still managed to collect some species on the wetter sites. 



We found some succulents and more grasses. We saw lots of different Aloes; Aloe ferox, Aloe broomii and Aloe striata. The flora field trip experience overall was amazing and fulfilling. Being a part of the BioGaps project has taught me a lot and it gives me motivation to do more to protect the flora of Southern Africa. 
















Thursday, 4 May 2017

Behind the scene supporters of Team Spider-by Robin Lyle

Fieldwork is the fun, hard and dirty part of an arachnologist’s job. However, have you ever wondered what happens to the spiders once they are collected? As part of the Karoo BioGap project, all spiders collected are deposited into the National Collection of Arachnida (NCA) that is housed in the Biosystematics building at the Agricultural Research Council.
Background of the collection
The National Collection of Arachnida (non-Acari) was established in 1976, the under Plant Protection Research Institute, which later became the Agricultural Research Council. It was established by Dr Ansie Dippenaar-Schoeman and is a comprehensive and fast growing collection in South Africa. It contains 70,200 accessions represented by approximately 210,600 alcohol-preserved specimens. Sampling of spiders has focused mainly on South Africa.
The NCA is one of South Africa’s Agricultural National Public Assets and it is maintained on behalf of the Department of Agriculture, Forestry and Fisheries (DAFF) and the Department of Science and Technology (DST). The collection contains a wealth of information, ranging from taxonomic names, biological and biogeographical information.

Process of accessioning a specimen
A specimen collected in the field follows a set procedure before it is included in the NCA. These steps are as follows:
1.       Specimens are sorted and placed into a glass container suitable for the collection.
2.       Specimen is identified to include order, family, genus and species name, where possible.
3.       Specimen information is written into a catalogue and given a unique accession number.
4.       Correct locality and identification labels, including accession number, are generated.
5.       Specimen and all associated data is captured into the NCA database.
6.       Specimen is stored in the collection.

The people behind the scene at NCA

The growth and upkeep of the collection is always ongoing. The National Collection of Arachnida is lucky to have a small team that helps in this task.

 Ezekia Sgudhla (left), Joel Mooka (middle) and Sma Chiloane (right) help with different aspects of accessioning a specimen. Responsibilities include basic sorting, label generation and identification to family level. 

Petro Marais (left), the collection manager of the National Collection of Arachnida, and Maggie Menyatso (right) who is responsible for databasing accessioned specimens. 

Small impoundments: a necessary evil for fish conservation in a global biodiversity hotspot

Small impoundments represent one of the most widespread anthropogenic changes to the riverscapes in the Cape Fold Ecoregion (CFE) at the southern tip of Africa - a region which originally lacked natural standing water bodies. These impoundments were primarily built for agricultural and livestock farming and have proliferated with increasing demand for water. Consequently, there are few free-flowing streams in the CFE. Construction of small impoundments has been widely documented to have serious ecological and biodiversity impacts, including changes in hydrologic regimes and fragmentation of historically connected populations of stream-inhabiting fishes, with adverse effects on their genetic characteristics. Small impoundments have also created favourable habitats that have facilitated the proliferation and spread of non-native species. 

While these negative impacts cannot be denied, observations and preliminary results from a recent comprehensive survey of the Great Fish River system by researchers and students from the South African Institute for Aquatic Biodiversity and Rhodes University are showing that small impoundments can also benefit biodiversity. This survey was conducted in January 2017 as part of Delsy Sifundza’s MSc research (funded by the NRF-FBIP Karoo BioGaps Project) to map the distribution and determine the status of remnant populations of the Eastern Cape Rocky, Sandelia bainsii (Figure 1). The Eastern Cape Rocky is a highly threatened endemic stream fish which has been listed by the IUCN as Endangered since 1987 due to rapid decline in population sizes and severe decline in its historical distribution range.

A picture of the Eastern Cape Rocky, Sandelia bainsii, showing the species’ live colour pattern.

Our survey indicated that the Kat River is the remaining stronghold of the Eastern Cape Rocky in the Great Fish River system. The survival of this species in the upper section of the Kat River has been facilitated by the presence of several impoundments of various sizes (Figure 2) which have prevented the spread of non-native fishes, such as the sharptooth catfish, small-mouth yellowfish and banded tilapia which are now dominant in the mainstem Great Fish River. Sandelia bainsii was abundant at sites above the weirs that formed the upper limit of non-native fishes in the Kat River. In these river sections, S. bainsii occurred with three other native fishes of the Great Fish River system: Labeo umbratus (moggel), Enteromius anoplus (chubby head barb) and Glossogobius callidus (river goby). Some of these impoundments are therefore likely to have formed effective barriers that could have protected the genetic integrity of the original L. umbratus genetic lineage in the Great Fish River which is threatened by potential hybridisation with a genetically distinct lineage of this species that was introduced into the Great Fish through the Orange-Fish tunnel Inter-Basin Transfer. The Kat River therefore represents an important sanctuary of highly threatened endemic fishes of the eastern CFE and should be prioritised for protection. There is critical need for building awareness among the communities to prevent the spread non-native fishes in the Kat River catchment. There is also need for establishing collaboration between researchers, conservation authorities and the local farming communities and land owners to identify the weirs that are preventing the upstream migration of non-native fishes to ensure that they are effectively secured and protected from potential breach or flood damage.

 A. A major weir in the lower Kat River close to the confluence with the Great Fish River is an impassable barrier for fishes from the mainstem Great Fish; B. a moderately sized weir in the Upper Kat where the lower distribution limit of Sandelia bainsii was recorded during the survey in January 2017.  

Research Team
Miss Delsy Sifundza (MSc candidate, Department of Ichthyology and Fisheries Science, Rhodes University)
Mr Tadiwa Mutizwa (MSc candidate, Department of Ichthyology and Fisheries Science, Rhodes University)
Dr Albert Chakona (South African Institute for Aquatic Biodiversity)
Dr Wilbert Kadye (Department of Ichthyology and Fisheries Science, Rhodes University)